Distinct intracellular trafficking of equine infectious anemia virus and human immunodeficiency virus type 1 Gag during viral assembly and budding revealed by bimolecular fluorescence complementation assays.

نویسندگان

  • Jing Jin
  • Timothy Sturgeon
  • Chaoping Chen
  • Simon C Watkins
  • Ora A Weisz
  • Ronald C Montelaro
چکیده

Retroviral Gag polyproteins are necessary and sufficient for virus budding. Numerous studies of human immunodeficiency virus type 1 (HIV-1) Gag assembly and budding mechanisms have been reported, but relatively little is known about these fundamental pathways among animal lentiviruses. While there may be a general assumption that lentiviruses share common assembly mechanisms, studies of equine infectious anemia virus (EIAV) have indicated alternative cellular pathways and cofactors employed among lentiviruses for assembly and budding. In the current study, we used bimolecular fluorescence complementation to characterize and compare assembly sites and budding efficiencies of EIAV and HIV-1 Gag in both human and rodent cells. The results of these studies demonstrated that replacing the natural RNA nuclear export element (Rev-response element [RRE]) used by HIV-1 and EIAV with the hepatitis B virus posttranscriptional regulatory element (PRE) altered HIV-1, but not EIAV, Gag assembly sites and budding efficiency in human cells. Consistent with this novel observation, different assembly sites were revealed in human cells for Rev-dependent EIAV and HIV-1 Gag polyproteins. In rodent cells, Rev-dependent HIV-1 Gag assembly and budding were blocked, but changing RRE to PRE rescued HIV-1 Gag assembly and budding. In contrast, EIAV Gag polyproteins synthesized from mRNA exported via either Rev-dependent or PRE-dependent mechanisms were able to assemble and bud efficiently in rodent cells. Taken together, our results suggest that lentivirus assembly and budding are regulated by the RNA nuclear export pathway and that alternative cellular pathways can be adapted for lentiviral Gag assembly and budding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence of a role for soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery in HIV-1 assembly and release.

Retrovirus assembly is a complex process that requires the orchestrated participation of viral components and host-cell factors. The concerted movement of different viral proteins to specific sites in the plasma membrane allows for virus particle assembly and ultimately budding and maturation of infectious virions. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE...

متن کامل

Equine infectious anemia virus utilizes a YXXL motif within the late assembly domain of the Gag p9 protein.

We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amin...

متن کامل

Differential effects of actin cytoskeleton dynamics on equine infectious anemia virus particle production.

Retrovirus assembly and budding involve a highly dynamic and concerted interaction of viral and cellular proteins. Previous studies have shown that retroviral Gag proteins interact with actin filaments, but the significance of these interactions remains to be defined. Using equine infectious anemia virus (EIAV), we now demonstrate differential effects of cellular actin dynamics at distinct stag...

متن کامل

Editorial: Role of lipids in virus assembly

Viruses utilize cellular lipids during critical steps of replication like entry, assembly, and egress. Growing evidence indicate important roles for lipids and lipid nanodomains in virus assembly. This special topic covers key aspects of virus-membrane interactions during assembly and egress of two classes, retroviruses and filoviruses. It discusses molecular mechanisms of assembly and budding ...

متن کامل

Equine infectious anemia virus Gag p9 function in early steps of virus infection and provirus production.

We have previously reported that serial truncation of the Gag p9 protein of equine infectious anemia virus (EIAV) revealed a progressive loss in replication phenotypes in transfected cells, such that a proviral mutant (E32) expressing the N-terminal 31 amino acids of p9 produced infectious virus particles similarly to parental provirus, while a proviral mutant (K30) with two fewer amino acids p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 81 20  شماره 

صفحات  -

تاریخ انتشار 2007